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Research article 
A Nairobi experiment in using low cost air quality 
monitors

Introduction 
Poor air quality is the world’s single largest environmental 
health risk. Exposure to air pollution in 2012 was responsible 
for an estimated seven million premature deaths and this 
problem is growing (World Health Organisation 2014). Given 
the large public health costs of air pollution, many countries are 
putting in place more measures to improve air quality, including 
laws, regulations, monitoring systems and public awareness 
campaigns (http://web.unep.org/airquality/). As further 
impetus for these efforts, the new Sustainable Development 
Goals includes as global targets, reducing annual mean levels of 
urban fine particulate matter (PM10 and PM2.5) and the mortality 
rate attributed to household and ambient air pollution. 

These efforts at monitoring and research are uneven across 
the globe. In sub-Saharan Africa, air quality data often do not 
exist, and regulations and laws are often not in place to curb 
air pollution; or if in place, are not implemented, even though 

existing research shows that the annual mean fine particulate 
matter in these cities often exceeds World Health Organisation 
standards (Njee et al., 2016; Petkova et al., 2013). Few African 
cities operate air monitoring systems, and most cities lack 
any air quality monitoring capabilities (Schwela, 2012a, Njee 
et. al 2016). Currently, only Ghana and South Africa operate 
comprehensive and well organized air quality monitoring 
programs (Amegah and Agyei-Mensah, 2016). In addition, the 
air quality data that does exist is not always made public and/
or communicated effectively, which limits public awareness and 
effective policy (Petkova et al., 2013).

Although systematic, long term monitoring is missing in most 
African cities, existing studies  show a serious and growing 
problem in urban air quality due to rapid urbanization coupled 
with industrialization, increasing motorization and the 
continued use of biomass fuel as the household energy source 
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Abstract
Many African cities have growing air quality problems, but few have air quality monitoring systems in place. Low cost air quality sen-
sors have the potential to bridge this data gap. This study describes the experimental deployment of six low cost air quality monitors 
consisting of an optical particle counter Alphasense OPC-N2 for measuring PM1, PM2.5 and PM10, and Alphasense A-series electrochemi-
cal (amperometric) gas sensors: NO2-A43F, SO2-A4, NO-A4 for measuring NO2, NO and SO2  in four schools, the United Nations Environ-
ment Program (UNEP) headquarters and a community center in Nairobi. The monitors were deployed on May 1 2016 and are still log-
ging data. This paper analyses the data from May 1 2016 to Jan 11 2017. By examining the data produced by these sensors, we illustrate 
the strengths, as well as the technical limitations of using low cost sensors for monitoring air quality. We show that despite technical 
limitations, sensors can provide indicative measurements of air quality that are valuable to local communities. It was also found that 
such a sensor network can play an important role in engaging citizens by raising awareness about the importance of addressing poor 
air quality. We conclude that these sensors are clearly a potentially important complement but not a substitute for high quality and 
reliable air quality monitoring systems as problems of calibration, certification, quality control and reporting remain to be solved 
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(UNEP, 2016; Lindén et al., 2012; Fiore et al., 2012; Schwela, 
2012b). The worst urban air pollution may actually be in sub-
Saharan African countries (Schwela, 2012a). There is thus an 
urgent need to monitor urban air quality in this region so that 
the health effects of pollutants can be better understood and 
quantified, leading to cost-effective abatement strategies and 
greater public awareness and pressure.

For many African cities, cost is one barrier to investing in air 
quality monitoring (Amegah and Agyei-Mensah, 2016 ; Schwela, 
2012a). The cost of reference air quality monitoring systems 
(AQMS) is high (costing between US $5000 and US $200,000 
for each AQM), and training and AQMS maintenance, as well as 
managing and analysing the data can also be expensive (Kumar 
et al., 2015; Mead et al., 2013). This means that even in those 
countries that have air quality standards and laws, there are 
often no monitoring systems to measure compliance. 

Within this context, low-cost sensors (costing between US $100 
and US $3000 for each node) appear to have the potential to help 
us move from a paradigm of high cost, highly accurate, sparsely 
located reference air quality monitors, to a dense, low cost, 
reasonably accurate air quality monitoring network that can 
also involve citizen science. However, currently no standards 
or certification criteria exist for such sensors, and there are 
concerns about the quality of the data (Lewis and Edwards, 
2016). Further, the flood of low cost sensors onto the market 
makes it difficult to determine the reliability of each model. 
Complicating the challenge of certification, cheap sensors from 
the same manufacturer often have variable performance. 

A US Environmental Protection Agency study of low cost sensors 
on the market found that either ‘no lower cost sensors currently 
meet [the EPA’s] strict requirements or have not been formally 
submitted to the EPA’ (Williams et al., 2014). The US EPA in their 
study tested these sensors in a clean environment in North 
Carolina, but how these sensors will perform in the polluted, 
hot, humid environments frequently found in the developing 
world is unknown. This is because temperature and humidity 
can affect the sensitivity of some of these sensors-especially 
low cost electrochemical gas sensors. Therefore, more work 
is needed to quantify the accuracy of these sensors under 
different conditions. Overall, more research is needed on the 
performance of low cost air quality networks in the field to 
address the need for monitoring in many of the world’s cities 
(Kumar et al., 2015, Lewis and Edwards 2016).

This paper presents the results and lessons learned from an 
experiment in using a low cost air quality monitoring network 
in Nairobi, Kenya. The main aim of this work is to contribute to 
the growing and important conversation about the role of low 
cost sensors in air quality monitoring efforts in cities (Kumar et 
al., 2015; Lewis and Edwards 2016, Kotsev et  al. 2016, Piedrahita 
et al., 2014; Popoola 2012). We were interested in exploring 
the feasibility of deploying such networks in African cities as a 
means of gathering some basic data in a quick and efficient way 
that also involves citizens. 

A collaboration between UNEP, the company Alphasense, 
the University of Cambridge, NASA-GLOBE, the Wajukuu Arts 
Collective and the Kibera Girls Soccer Academy, resulted in 
the deployment of a pilot, six node air quality network in 
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four schools, UNEP and one community center in the city of 
Nairobi, Kenya. The collaboration also aimed to share the 
experience of air quality monitoring with interested citizens. 
The sensors include an optical particle counter  (Alphasense 
OPC-N2) that measures PM1, PM2.5 and PM10,  Alphasense A-series  
electrochemical gas sensors (NO2-A43F, NO-A4, SO2-A4)  for 
measuring NO2, NO and SO2, temperature and humidity sensors, 
and a SIM card to transmit data in near real time via the GSM 
network. 

These pollutants were chosen to be measured because particles 
with aerodynamic diameters less than 10 µm, when inhaled, 
become embedded in soft tissue and have major health effects. 
Particulate matter in the environment can have hundreds of 
different sources. NO and NO2 are the two oxides of nitrogen that 
majorly affect human health. NO typically rapidly oxidizes to 
NO2. However, the direct emission of NO from vehicles can result 
in high levels of NO close to roads. SO2 also negatively affects 
health. It also reacts with other compounds in the atmosphere 
to form fine particulates. SO2 is typically emitted from power 
plants, industrial facilities, and from the burning of diesel with 
high sulphur content. 

This network started running on May 1, 2016 and is still in 
operation at the time of writing this paper. After a brief review of 
air pollution in Nairobi, where no continuous monitoring system 
yet exists, we present our methods and analyse data collected 
from this network. Drawing on this experimental deployment, 
we discuss lessons learned for the potential of low cost air 
quality networks to support air quality monitoring in African 
cities. 

Background to the Nairobi Case 
Study
The capital of Kenya, Nairobi is a rapidly growing metropolitan 
area with an estimated 4 million people living or working 
within its city boundaries. By 2030, this population may grow 
to as much as 6 million (World Bank 2016). Air pollution has 
accompanied this urban growth. Sources include vehicles, 
open air burning of solid waste, industrial activity and domestic 
cooking using biomass (Gatari 2009, Kinney et al. 2011, Muindi et 
al. 2016). Despite growing air quality regulations, such as in the 
Environmental Management and Coordination Act (Air Quality) 
Regulations 2014, Nairobi, like most Africa cities, does not have 
an institutionalized air quality monitoring system. 

Scientists at the University of Nairobi, African Population and 
Health Research Center and their international collaborators 
(Gaita et al., 2014; Gatari et al., 2009; Gatari and Boman, 2003; 
Kinney et al., 2011; Muindi et al., 2014; Ngo et al., 2015; Vliet 
and Kinney, 2007) have taken a number of measurements in 
Nairobi. These are, however, short-term observations at limited 
points around the city (background, industrial, roadways, and 
households in informal settlements) and limited numbers of 
pollutants, mostly PM2.5. In many cases, levels of PM2.5 appeared 
well above the World Health Organization (WHO) 24-h average 
guideline of 25 mg/m3 and an annual average guideline of  
10 µg/m3. However, some measurements were not always 
comparable with these guidelines, as continuous monitoring 
was not taking place (Kinney et al., 2011; Ngo et al., 2015).
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Methods
Air quality monitors were bought from the company: 
Atmospheric Sensors Ltd. in the UK (The product catalogue 
is found here: http://atmosphericsensors.com/products/
product-brochures/remote-air-quality-monitor/view). The 
monitors comprised of an optical particle counter (Alphasense 
OPC-N2) and Alphasense A-series electrochemical gas sensors, 
temperature and humidity sensors, and a SIM card to transmit 
data in near real time via the GSM network. The OPC-N2 (costing 
USD 450 each) measures particle counts in 16 bins ranging from 
0.38 µm to 17.5 µm. It does this by illuminating one particle 
at a time using focused light from a laser, and measuring the 
intensity of light scattered from aerosol particles. The amount 
of scattering from a particle is a function of particle size and 
composition, which can be calibrated using mono-disperse 
particles (Sousan et al., 2016). The number of particles per 
volume for each of these bins can be obtained by dividing the 
particulate counts of each bin by flow rate and sample time. 
Alphasense provides a partially proprietary algorithm that 
makes assumptions about the particle density to calculate PM1, 
PM2.5 and PM10 data from the particle count data. The OPCs in 
this deployment turn on and run for 20s every 60s; there is 15s 
of warm up then 5s of actual measurement. The sampling flow 
rate (SFR) is typically 3.7 mL/s, but varies with temperature. The 
accuracy of these monitors depends on the size distribution of 
particulates present, environmental factors such as humidity 
and the hygroscopicity of the particulates present (Sousan et 
al., 2016). Without this detailed information, the uncertainty in 
measurements of the OPC-N2 cannot be quantified.

The Alphasense A-series electrochemical (amperometric) 
gas sensors (NO2-A43F, SO2-A4, NO-A4): 4-electrode, 20 mm 
diameter aperture sensors (USD 50-75 each), measure NO2, NO, 
SO2. The electronics of the node used to convert the current 
of the electrochemical gas sensors to volts and the analogue-
to-digital conversion of this voltage signal is proprietary to 
Atmospheric Sensors. The gas sensors log data every minute 
at the same time as the OPC. The monitors were coupled to a 
UPS in order to maintain instrument sensitivity during short 
power failures. Electrochemical gas sensors exhibit cross-
interferences with other pollutants. For example, the NO sensor 
is sensitive to NO2 (Data sheet: http://www.alphasense.com/
WEB1213/wp-content/uploads/2016/03/NO-A4.pdf). The NO2 
sensor is extremely sensitive to O3 (Data sheet: http://www.
alphasense.com/WEB1213/wp-content/uploads/2016/04/NO2-
A43F.pdf). The SO2 sensor is most sensitive to H2S and NO2 (Data 
sheet: http://www.alphasense.com/WEB1213/wp-content/
uploads/2013/12/SO2A4.pdf). 

Changes in ambient temperature and humidity also affect the 
sensitivity and sensor gain. The sensors were pre-calibrated 
at the Alphasense laboratory in the UK, and calibration curves 
were provided for the gas sensors in order to convert the signals 
into gas concentrations, expressed as parts per billion by volume 
(ppb). Alphasense also provided the temperature correction 
factors for the gas sensors. Research has shown though, that 
although the sensor manufacturer’s correction is effective for 
sensitivity-dependent temperature correction, it is not effective 
for temperature-dependent baseline change. Research has also 
shown that this baseline effect is more pronounced for the NO 
sensor than for the NO2 sensor (Popoola et al., 2016). This shall 
be discussed further when the results are presented. 

Data was pulled from the Alphasense server via a file transfer 
protocol. 

One of the biggest drawbacks of our network is that co-location 
of the low cost monitors with a reference air quality monitor 
was not conducted. Thus, we have no way to test the accuracy 
of data from our monitors. We also did not calibrate the 
electrochemical gas sensors in the ambient environment. We 
tried to conduct a qualitative appraisal of the data we gathered 
by going to each site and talking to the people there about what 
they observed. However, we acknowledge that co-locating at 
least one of our monitors with a reference air quality monitor 
would have significantly enhanced our results. We present our 
analysis and data in this context.

This is the first time air quality was monitored in schools in 
Nairobi. We specifically engaged with three schools that were 
part of the NASA GLOBE community (https://www.globe.gov/), 
which is an international program that allows students the 
opportunity to participate in data collection. We did this to 
leverage the existing citizen science program in the schools. 
We also hoped that we could use our collaboration with NASA 
GLOBE to expand our deployment in other GLOBE schools in the 
future. 

We selected our sites in a variety of locations. We deployed 
air quality monitors in low-income schools in the informal 
settlements: a) Kibera Girls Soccer Academy situated in the 
informal settlement: Kibera near the railway tracks and b) 
Viwandani community center in an informal settlement in the 
industrial area of Nairobi. We also deployed monitors at c) St 
Scholastica, situated 20 meters away from the notoriously 
congested Thika Highway in order to capture pollutants from 
vehicular emissions, d) at UNEP located in Gigiri, which is a 
relatively green, low density residential, and wealthy part of 
the city. At e) All Saints Cathedral School which is close to a 
major road, Mbagathi road, as well as several small shops and 
industries. Finally, we deployed a monitor at the elite national 
school, f) Alliance Girls School, located in Kikuyu, a small town to 
the North of Nairobi as an urban background site. By deploying 
our monitors in this range of sites, we hoped to capture the 
signature of different sources in the city as well as get a sense 
of the differing conditions between very poor and wealthier 
neighbourhoods. Figure 1 shows the geographic locations of the 
sites in the city.

The monitors were deployed on walls 1.5-2 meters above 
the ground so that they would be at close to adult breathing 
height, but out of reach of the casual passer-by. Note that as the 
monitors were mounted on walls instead of poles, the sensors 
only measure pollutants from air masses for a swath of 180 
degrees. A plastic shield provided by Alphasense was used to 
protect the monitor from rain as seen on the upper right-hand 
side of Figure 1. As of January 11, 2017, the OPCs at all the sites, 
except for that at Viwandani, which experienced power outages 
for a few days in May and June and an extended power outage 
past July 2016, are logging data. The monitor at Alliance Girls 
School experienced a power outage for most of the month of 
September 2016, and the one at Kibera Girls School Academy 
experienced a few hours of power shortage on 19 August 2016, 
but otherwise have been logging data. 
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We hoped that by engaging with schools and community 
centers, we would be able to involve the public in air quality 
monitoring. Participation by residents in the monitoring is an 
important way to communicate the science of air pollution to 
citizens (Ngo et al. 2015a). Studies show that Nairobi residents 
from poor neighbourhoods appear to have a wide variety 
of often-inaccurate perceptions about air pollution, in part 
because they have very little information about it (Egondi et al., 
2013; Muindi et al., 2014; Ngo et al., 2017, 2015). Nevertheless, 
a 2015 telephone survey of a representative sample of Nairobi 
residents, revealed that a majority of Nairobi’s adult citizens 
perceive the air in the city as bad or very bad (69%) and among 
those who consider the air bad, 93% believed it had an impact 
on their health. This makes the idea of involving people in 
monitoring, especially through learning institutions, a viable 
and potentially important approach that we wanted to test

Finally, we presented preliminary data analysed using the 
‘OpenAir’ package in R version 3.3.2 (Carslaw and Ropkins, 
2012) to school children at each deployment site in order to 
raise awareness about air pollution as well as to brainstorm 
potential pollution management strategies for the community. 
We sourced large-scale wind data (that is not local, canyon-
influenced wind data) averaged over a period of two minutes, 
half hourly for this analysis from the Wyoming Weather Website 
(http://weather.uwyo.edu/surface/meteorogram/), for the 
Jomo Kenyatta airport site to the south of the city at an elevation 
of 1624 meters.

Results
Figure 2 shows the hourly averaged PM data obtained from 
monitors at each of the six sites from May 5 2016 to Jan 11 
2017. The monitors started running at different times on May 
1 so for consistency, we ignore the data for the first 5 days of 
measurement. Raw minute wise PM data has been plotted in Fig 
1A in the Appendix. The raw PM data showed peaks that were as 
high as a few 1000 µg/m3. It is extremely unlikely for PM readings 
to reach such high values in a natural environment. However, 
without co-location with a reference instrument, it is impossible 
to distinguish the signal from the noise. 

From Figure 2, we see that the PM readings at the informal 
settlements Kibera and Viwandani are routinely very high. A 
summary of the average minute wise PM readings for each site 
are provided in Table 1. We note that the difference in PM2.5 

Research article: A Nairobi experiment in using low cost air quality monitors Page 4 of 31

in up-scale schools such as St Scholastica and Alliance Girls 
School, and the PM2.5 recorded by the monitors at the sites in the 
informal settlements: Kibera and Viwandani are not very high. 
We also observe that particulate matter pollution recorded by 
our monitors at UNEP and All Saints are lower than at the other 
sites. 

The hourly averaged periodic spikes in PM10 at the Alliance 
site are observed to reach a few 1000 µg/m3. As mentioned 
previously, it is unlikely that PM10 reaches such high values in the 
natural environment. These peaks in pollution could indicate a 
source of pollution very close to the sensor. On going to the site, 
we found that the school did indeed burn wood very close to 
the site. This ‘ground-truthing’ shall be discussed further. It is 
interesting to note that peaks of the same magnitude as seen in 
the PM10 data were not seen in the finer particulate observations. 
More information on the kind of burning is required to speculate 
why this is the case. 

We analysed the temperature corrected gaseous pollutant data 
using the Alphasense calibration and temperature correction 
at each site. Figure 3 shows temperature-corrected hourly-
averaged NO2, SO2 and NO data at each site. Raw minute wise 
gaseous pollutant data for each site can be found in Figure 2A 
in the Appendix. 

We see from Figure 3 that a significant number of gaseous 
pollutant observations were < 0. Table 1 shows how much of the 
gaseous data recorded was < 0. This appears to be an issue of 
instrument calibration and also perhaps consistency between 
instruments, which we will discuss in more detail in later 
sections.

The raw data in Figure 2A in the Appendix also shows that for 
each site some NO observations go to a few -100 ppb. This 
seems to correspond to the value of NA for the NO sensor. We 
have applied a filter and eliminated NO values less than -100 
ppb from our analysis from here onwards. 

As mentioned before, no ambient calibration was carried out 
for the electrochemical gas sensors and therefore the gaseous 
pollutant values have to be viewed with skepticism. We present 
them here to see if any useful signal can be gleaned from the 
pollutant data. 

Table 1 provides a summary of the pollutant data at each site. A 
multi-pollutant approach of analysing air quality in Nairobi can 
be useful in identifying common-sources across the city, as well 
as in identifying possible health effects that could arise from 
exposure to multiple pollutants, and not just a single pollutant. 
(Dominici et al., 2010). 

From Figure 3 we note that SO2 is measured to be highest at 
Viwandani. This seems reasonable. Our site is located in the 
industrial area of Nairobi. Community members informed us 
that several factories existed in the vicinity of the site ranging 
from a paint factory, a factory that manufactured electrical 
connections and a factory that produced the raw materials for 
tear gas. Given this background, the high SO2 values that we saw 
were not unexpected. We were, however, surprised to see the 
peak in SO2 levels at St Scholastica. More work is required to 
verify this peak, and to identify a potential source. We posit that 

Figure 1: This shows a map of the six deployment sites with a photograph 
of what each site looks like. The upper right figure is a photograph of the 
monitor deployed at each site. 
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Figure 2: Hourly averaged PM1 (red), PM2.5 (blue) and PM10 (green) time series plots for each site in units of µg/m3   a) Kibera Girls Soccer Academy, b) 
Viwandani Community Center, c) St Scholastics, d) UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 5 2016 to January 11 2017.
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Figure 3: Hourly averaged NO2 (red), NO (blue) SO2 (green) time series plots for each site in units of ppb for the sites  a) Kibera Girls Soccer Academy, b) 
Viwandani Community Center, c) St Scholastics, d) UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 5 2016 to January 11 2017. 
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as St Scholastica is situated next to the notoriously congested 
Thika Highway, fumes from the burning of diesel with high 
sulphur contents could have resulted in such high values of SO2 
being observed. 

NO2 values don’t vary greatly across sites. The lowest NO2 values 
were observed at Viwandani and Alliance. This could be because 
our monitors were located far away from the main roads at both 
sites. The highest NO2 values recorded were at St Scholastica, 
and we again posit that this could be because of the proximity 
of this site to Thika Highway.

We were also surprised to see the high NO values at UNEP and 
Alliance. 

More work is required to identify how many of the values we see 
were signal as opposed to noise. More work is also required to 
identify contributing sources.

Dependence of measurements on 
temperature / humidity
PM

Pearson correlation coefficients (R) of the pollutants with 
temperature and humidity were calculated at each site. These 
values are also summarized in Table 1. Note that we applied a 
filter to the NO data and eliminated records that were < -100 
ppb. Otherwise we used the raw data to calculate correlations 
involving gaseous pollutants- including negative observations. 

Table 1: Summary of air quality statistics at each of the six sites. We have rounded pollutant values to the nearest whole number to avoid reporting 
insignificant figures. Note that for calculating correlations (R) involving the gaseous pollutants we used raw values. We only applied a filter to remove NO 
values that were < -100 ppb at all sites.  

Kibera Viwandani St Scholastica UNEP All Saints Alliance

Total # 355274 72950 352926 355662 357168 312844

Mean PM1 µg/m3 15 14 11 8 7 12

Mean PM2.5 µg/m3 23 21 17 12 11 17

Mean PM10 µg/m3 59 44 30 28 26 43

# NO2>0 255692 54958 308370 288084 276668 248772

# SO2>0 66192 21687 352638 220297 339850 283234

#NO>0 20782 1885 35812 27324 6202 5826

Mean NO2 in ppb for values >0 8 9 12 10 10 8

Mean SO2 in ppb for values >0 19 40 35 13 18 16

Mean NO in ppb for values >0 11 10 10 19 13 21

Correlation of temperature with humidity -0.83 -0.86 -0.86 -0.89 -0.86 -0.86

Correlation of PM1 with temperature -0.11 -0.2 -0.13 -0.21 -0.19 -0.18

Correlation of PM2.5 with temperature -0.08 -0.18 -0.12 -0.18 -0.17 -0.17

Correlation of PM10 with temperature 0.039 -0.017 -0.054 0.12 0.05 -0.025

Correlation of NO2 with temperature -0.2 -0.33 -0.11 0.059 -0.51 0.015

Correlation of SO2 with temperature -0.38 -0.33 0.66 0.28 0.28 -0.0021

Correlation of NO with temperature -0.39 -0.51 -0.69 -0.43 -0.74 -0.82

Correlation of PM1 with humidity 0.09 0.16 0.09 0.25 0.2 0.17

Correlation of PM2.5 with humidity 0.047 0.13 0.07 0.2 0.17 0.15

Correlation of PM10 with humidity -0.06 -0.05 -0.045 -0.15 -0.12 0.05

Correlation of NO2 with humidity 0.09 0.26 -0.05 -0.09 0.45 -0.079

Correlation of SO2 with humidity 0.28 0.25 -0.5 -0.19 -0.12 0.069

Correlation of NO with humidity 0.40 0.44 0.44 0.41 0.74 0.72

Mean PM2.5/PM1 1.6 1.6 1.53 1.53 1.63 1.45

Standard Deviation PM2.5/PM1 0.29 0.2 0.15 0.15 0.18 0.26

Correlation between PM2.5 and PM10 0.43 0.71 0.87 0.64 0.62 0.12

Correlation between PM1 and PM2.5 0.96 0.99 0.99 0.99 0.99 0.99
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Table 1 shows that except for Kibera and St Scholastica, there 
is a small correlation between temperature/humidity and PM2.5 
and PM1. When we plotted PM2.5 versus temperature at each site 
in Figure 3A, it was not clear that peaks in PM2.5 corresponded 
to low temperatures. More research is required to identify how 
this temperature dependence affects the measurements. One 
possible reason for this correlation is the lower the temperature, 
the higher the humidity (temperature and humidity are 
correlated strongly). If the particles at the site are hygroscopic, 
the particle size increases, and the OPC detects bigger particles 
and thus overestimates PM2.5. We see that the correlation 
between temperature/humidity and PM10 is negligible.

Gaseous pollutants

As stated previously, temperature and humidity greatly impact 
the electrochemical gas sensors performance. We thus analyse 
the data from our sensors in relation to these parameters in 
order to identify temperature and humidity ranges in which 
the data is more likely to be less dependent on effects of these 
environmental factors. 

We note that NO2 and SO2 and NO are strongly correlated with 
temperature at each site as can be seen from Table 1. The 
correlation of each pollutant with temperature varies widely 
across sites. In addition we note that the sign of the correlation 
also is not constant across sites for NO2 and SO2. We plotted the 
time series of NO2, SO2 and NO at each site with the temperature 
at each site determining the colour scale in Figures 4A to 7A in 
order to examine this correlation in more detail.

From Figure 4A and 6A, we clearly see that high temperatures 
(roughly > 20° Celsius) correspond to negative values of 
NO2 and NO being recorded. As mentioned previously, we 
know that the Alphasense temperature correction does not 
adequately account for the baseline temperature correction 
of electrochemical sensors, especially for NO. We also know 
from the chemistry of electrochemical sensors that the effect 
of temperature is higher at higher temperatures (Popoola et al., 
2016). We thus posit that this is the reason we observe negative 
gaseous values. Co-location with a reference instrument is 
required to test this hypothesis. 

We note that the sign of the correlation between NO2 and 
temperature is positive for the sites UNEP and Alliance in Table 
1, because although all negative values of NO2 recorded are at 
high temperatures, some high temperatures also correspond 
to positive NO2 values, and there are fewer negative NO2 values 
for these sites. (Note that in Figure 4A, we have applied a filter 
and removed NO values< -100 ppb. Figure 5A in the Appendix 
includes these values). 

From Figure 7A, we see that negative values of SO2 correspond 
to high temperature readings for the sites Kibera, Viwandani 
and Alliance. However, for St Scholastica, UNEP and All Saints 
we find that very few of the temperature corrected values are 
< 0 (refer to Table 1) and thus we do not see the same negative 
correlation. We are not sure why this is the case. It could be 
possible that the temperature correction factor for the SO2 
sensors for the latter three sites are better than for the former, 
which raises the question of potential consistency across these 
sensors; or it could mean that cross-interference with other 
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pollutants are affecting the data at the sites at which they occur 
in significant quantities. To address questions of potential 
consistency between sensors, it would be helpful to test a 
number of these sensors at the same site.

Note, that in Table 1A, when only gaseous pollutant values > 
0 were used, we see that the correlation obtained between 
the gaseous pollutants and temperature/humidity change 
dramatically, and this time, are the same sign across all sites. 
In addition, we find that the magnitude of correlation between 
the measurements that are > 0 and temperature/humidity is 
low indicating that the signal the sensors are picking up is more 
likely due to pollutants. We will thus work with these gaseous 
pollutant values for the rest of this analysis.

Table 1 and 1A also shows correlations between all observations 
of pollutants. Table 1 shows that PM1 and PM2.5 are strongly 
correlated at each site. From Table 1A, we see a significant 
correlation between SO2 and PM2.5, NO and PM2.5 (except at St 
Scholastica and UNEP), and NO2 and PM2.5 (except at Alliance), 
NO2 and SO2 (except at Alliance).

Intra Urban Variation of Pollution

We next examined the intra-urban variability in each pollutant 
across out sites. We note from the correlation between PM2.5 for 
each site-pair in Table 2, that most site-pairs correlate with one 
other to a not-insignificant manner. 

The correlation of PM2.5 at each site-pair is not based on distance 
between sites. The sites at UNEP, St Scholastica, All Saints and 
Kibera are < 10 km away from each other. The site at Alliance 
Girls School is ~15 km away from all the sites. However, we note 
that correlations between Alliance, and UNEP and All Saints are 
relatively high, in spite of Alliance being far from these sites.
 
In order to understand if this correlation is due to wind, we 
produce continuous bivariate plots of normalized PM2.5 for each 
site as a function of wind speed and wind direction using the 
package OpenAir as seen in Figure 3. Note by using smoothing 
techniques (via the polarPlot function in the openair R package) 
to produce the bivariate plots, we are able to identify and group 
similar features to help identify sources. Wind speeds are zero at 
the origin and increase radially in each plot. The black arrow in 
each plot corresponds to the direction in which the monitor at 
each site is facing.

We note here that for Viwandani and Alliance, for example, there 
appears to be a source of pollution existing in the west, so that 
winds from that direction result in the OPC logging high values 
of PM. This could partially explain the correlation in PM2.5 we see 
across sites. However, we do not see any correlation between 
PM2.5 at Kibera and St Scholastica even though there appear 
to be a source in the south-east for both sites. This could be 
because we are not using site-specific wind data. Local canyon 
effects could profoundly affect our results. In the future, we 
recommend using site-specific wind data for this analysis. 

It must also be noted here that as our monitors were wall-
mounted, their swath as mentioned before is 180 degrees instead 
of 360 degrees. By indicating the direction which each monitor is 
pointing, we can also examine if there is a directionality bias for 
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Table 2: Correlation (R) between PM1, PM2.5, PM10, NO2, SO2, NO for each pair of sites. Gas values > 0 are considered only.

PM1 Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.13 0.09 0.18 0.19 0.15

Viwandani 1 0.11 0.25 0.29 0.14

Scholastica 1 0.18 0.09 0.11

UNEP 1 0.30 0.26

All Saints 1 0.22

Alliance 1

PM2.5 Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.13 0.08 0.16 0.18 0.13

Viwandani 1 0.10 0.24 0.28 0.14

Scholastica 1 0.16 0.09 0.10

UNEP 1 0.28 0.23

All Saints 1 0.21

Alliance 1

PM10 Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.04 0.07 0.06 0.08 0

Viwandani 1 0.15 0.15 0.28 0.01

Scholastica 1 0.24 0.2 0

UNEP 1 0.25 0.02

All Saints 1 0.01

Alliance 1

NO2 Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.53 0.49 0.53 0.67 0.51

Viwandani 1 0.32 0.46 0.62 0.38

Scholastica 1 0.53 0.32 0.45

UNEP 1 0.41 0.58

All Saints 1 0.35

Alliance 1

SO2 Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.29 0.11 0.12 0.18 0.22

Viwandani 1 0.044 0.09 0.17 0.12

Scholastica 1 0.17 0.56 0.14

UNEP 1 0.15 0.018

All Saints 1 0.21

Alliance 1

NO Kibera Viwandani Scholastica UNEP All Saints Alliance

Kibera 1 0.23 0.03 0 0.17 0.32

Viwandani 1 0.18 0.18 0.11 0.33

Scholastica 1 0.099 0 -0.06

UNEP 1 0.09 -0.13

All Saints 1 0.10

Alliance 1
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Figure 4: Bivariate plot of PM2.5 normalised by dividing by their mean value from 5 May 2016 to 11 January 2017 plotted against wind speed and wind 
direction for the sites a) Kibera Girls Soccer Academy, b) Viwandani Community Center, c) St Scholastica, d) UNEP, e) All Saints Cathedral School, f) 
Alliance Girls School. Wind speed is zero at the origin and increases radially. The color scale indicates the PM2.5 concentration. The black arrow in each 
plot points in the direction each monitor is facing. 
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each monitor. It appears that the monitors record pollution in 
the direction in which they are facing, indicating that the limited 
swath of our monitors could also affect our results.

Analyzing the chemical composition of PM2.5 at each site to 
conduct a source apportionment could also provide further 
insights into the correlation of PM2.5 between sites.

Figure 4 provides us with further insights in itself. We see that 
for our sites in Kibera and Viwandani, fine particulates impinge 
on the monitor from many directions, even at low wind speeds, 
with the greatest pollution coming from the south-east for the 
former and north-west for the latter. 

From Figure 4 we also note that for St Scholastica, there is a 
major source of pollution to the south of the site for fairly high 
wind speeds. Thika Super Highway is to the south-east of the 
monitor, and it is possible that most of the fine particulates that 
the monitor has registered are from vehicular emissions coming 
from the highway.

We note from Table 2 that the correlation for NO2 across all sites 
is high. The correlation for NO across all sites is low on the other 
hand. NO is a chemical that persists in the atmosphere for a 
very short time before being oxidized to NO2. This could explain 
the low correlation between NO across all sites. However, NO2 

persists longer and is mainly emitted from vehicles. Traffic 
patterns in Nairobi are roughly the same across the city  at all 
sites and this could explain the high correlation in NO2 across 
all sites. 
 

We next look at the minute-wise PM2.5/PM1 and PM10/PM2.5 at each 
site as shown in Figure 5. These values are summarized in Table 
1. We see that PM1 and PM2.5 correlate strongly. Figure 5 shows 
that observations from all sites can be viewed in 2 clusters. The 
bulk of the observations have a PM2.5/PM1 ratio between 1.4 and 
1.7. A small cluster of observations have a much higher PM2.5/
PM1 ratio ~ 5. St Scholastica, is unique in that the monitor at this 
site records some observations that have a PM2.5/PM1 of ~2.5. 

This could indicate a unique source at this site. A visit to each site 
is required to test this hypothesis. Table 1 is a summary table 
that provides the mean PM2.5/PM1 at each site and the standard 
deviation of each ratio. We also note the clusters of data seen in 
the plot of PM10/PM2.5.

In order to understand the latter more closely we look at the 
variation in the ratio of PM10/PM2.5 with respect to wind speed 
and wind direction. This will allow us to look at the signature of 
different sources of pollution, located in different directions and 
different distances from each site.

We thus plotted PM10 versus PM2.5 for each site versus wind speed 
and wind direction as seen in Figure 6. We see that the ratio of 
PM10/PM2.5 is somewhat dependent on wind speed and wind 
direction.

We repeat the same analysis for the gaseous pollutants and 
have plotted observations of NO2, NO and SO2 that are > 0 versus 
PM2.5 for each site as seen in Figure 7. We see that the SO2-PM2.5 
ratio is correlated more strongly than any of the other pollutant 
combinations in Figure 7.

We will now examine the pollutants at each site in detail.

Site Analysis 
Kibera Girls Soccer Academy
Figure 8 shows the raw PM concentration variations averaged 
over a week and over a single day, for the measurement 
timeframe: May 5, 2016 to January 11, 2017 at the Kibera Girls 
Soccer Academy site in the informal settlement of Kibera. We see 
pollution peaks in the morning shortly before 6 am and in the 
afternoon on weekdays. However, on Saturday, we see another 
sharp peak at noon. Pollution appears to reduce on Sundays.

The pollution at this school is far worse than at the other sites. 
PM10 goes up to 100 µg/m3 frequently and exceeds this value 
during peak hours. Kibera was the only site where on certain 
days, the 24-hour limit value for PM10 (100 µg/m3) set out in 
Kenya’s EMCA (Air Quality) Regulations (2014) was exceeded. 
This limit was exceeded for 17 days for the time-period of 
measurement. 

The high concentration of particulates could indicate the 
presence of a significant local source of pollutants. The practise 

Figure 5: Scatter plots of PM2.5 versus PM1 and PM10 for each site. Units are 
in µg/m3
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of burning waste due to inadequate waste collection is common 
here and could be the cause of the high values of pollutants 
recorded. PM2.5 is above the WHO standard, an average of 20 µg/
m3 over the course of a day. These results are similar to the high 
PM2.5 levels measured in the poor neighbourhood of Mathare 
(Ngo et. al 2015a). 

PM counts decrease at night, indicating that most of the PM 
pollution is due to daytime human activity. 

In order to examine the various sources for this site in more 
detail, we again used bivariate plots using the OpenAir package 
(Carslaw and Beevers, 2013), and mapped all the pollutants with 
respect to wind speed and wind direction to identify common 
sources. Figure 9 shows continuous bivariate plots produced 
of each pollutant recorded with respect to wind speed and 
wind direction at the site. Although we are aware that the gas 
pollutant data in particular is suspect, we believe that by plotting 
bivariate plots of each pollutants and common sources are 
identified, that could give us some indication if we are observing 
any signal in the gaseous pollutant data and thus allow us to vet 
this data crudely. It is with this perspective that we examined 
the data. As mentioned earlier, smoothing techniques is used in 
producing these plots to identify similar groups of pollutants. 
We used a smoothing parameter of 100 (low smoothing) for 
producing plots for particulate matter and NO2, while we used 
a smoothing parameter of < 50 (high smoothing) for NO and SO2 
as we did not have enough data to produce smooth continuous 
surfaces for higher cluster sizes.

It can be seen from Figure 9 that there appears to be a major 
source of particulate matter, some NO and some NO2 in the 
south-east. When we visited the site, we learnt that a significant 
amount of burning was happening to the south of our site near 
the railway track and this could be a potential source of the 
particulates. There is a source of SO2 and NO2 pollution from the 
north-west for high wind speeds.  The main road is to the west of 
the site, and this could be a source of these pollutants.

It is not clear if, given that the monitor faces the north-east, 
there is a bias in the directionality of particulates the monitor 
registers. Further studies will be needed to determine this.
 
Viwandani Community Center
Unfortunately, the OPC at this site stopped recording values 
in early July. However, for the months of May and June, we 
repeated the above analysis and obtained Figure 10. 

We see that here, as at Kibera, PM10 levels are higher than at other 
sites. The monitor here is situated in an informal settlement 
in the industrial area of Nairobi that is highly polluted, which 
explains the high values of pollutants recorded. We see that 
particulate pollution peaks in the morning before 6 am, and 
in the evening around 6 pm. Pollution reduces on average on 
Sundays but peaks on Saturdays. Given that the pollution here 
too reduces in the night, we can conclude that pollution is driven 
by human activities. Thus, the time variation of the pollution 
provides us an idea of the time at which activities (cars on the 
street, burning of waste) take place at this site.

We also see that here, unlike in Kibera, PM2.5 and PM1 track PM10 
more closely (the correlation between PM2.5 and PM10 as shown 
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in Table 2 is 0.71 as opposed to 0.43 for Kibera). An examination 
of the different sources in this area needs to be conducted to 
determine why this is the case.

Here too we plot bivariate plots for each pollutant at the site to 
identify common sources in Figure 11. We see that there appears 
to be a common source of fine and coarse particles as well as 
SO2, NO2 from the north of the site. We note that there appear 
to be multiple clusters of pollutants indicating the presence of 
multiple sources of pollution close to the site. Here, as in Kibera, 
we used a smoothing parameter of < 50 for SO2 (note we did not 
have enough data to plot NO), while for the other pollutants we 
used a smoothing parameter of 100.

St Scholastica School
The time variation of PM1, PM2.5 and PM10 at St Scholastica 
School as shown in Figure 12. Here we see that PM peaks in the 
morning and in the evening. These peaks corresponds to the 
flow of traffic of people coming to work in the morning, and 
leaving in the evening, implying that emissions from vehicles is 
a major source of pollution at this site. The peaks in particulates 
are far more pronounced than at UNEP (Figure14) which is also 
next to a road. Indeed, PM2.5 during the day is as much as 15 µg/
m3 higher than during the night. This could be because Thika 
Highway, a major highway closer to the school, accommodates 
far more traffic than UN Avenue where UNEP is located. 
Pollutant concentrations decrease on average on both Saturday 
and Sunday, and not just on Sunday as seen at UNEP. PM peaks 
in June as at UNEP.

Figure 13 shows bivariate plots of all pollutants. It can be seen 
that there is a source of particulate matter in the south. We 
see there appear to be multiple sources of SO2 from different 
directions. There also appears to be a source of NO2 and NO in 
the west for high wind speeds. Thika Highway running from the 
south-west to the north-east of the monitor could be a major 
source of pollutants. 
 
UNEP
Figure 14 shows the variation of minute-wise particulate matter 
concentrations over a typical week and a typical day for our 
other urban background site at UNEP. 

Note that typical PM2.5 concentrations vary between 10-15 
µg/m3 for this site in keeping with the studies done earlier 
by (Gaita et al., 2014). Here, as at St Scholastica, particulate 
matter concentrations tend to peak in the morning and evening 
from Monday to Saturday, corresponding to the flow of traffic 
of people coming to work in the morning, and leaving in the 
evening, implying that emissions from vehicles is a major 
source of pollution at this site. The peak registered on Saturday 
evenings is surprisingly high, and we still have to account for its 
cause. We speculate that it is due to people visiting the nearby 
mall Village Market. Note that on Sunday, pollutant levels are 
low. We can also see that PM levels are also highest in June. 

Figure 15 shows the bivariate plots of each pollutant with 
respect to wind speed and wind direction. Note to produce the 
plots we used a smoothing parameter of 100 for all pollutants 
except for NO, where we used a smoothing parameter of < 50. 
We see that there is a source of fine particulates close to the 
monitor. We see there is a major source of coarse particulates 
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Figure 6: Scatter plots of PM2.5 versus PM1 and PM10 for each site with the color scale indicating wind speed, broken up by wind direction. Units are in µg/
m3.



CLEAN AIR JOURNAL Volume 27, No 2, 201725

Research article: A Nairobi experiment in using low cost air quality monitors Page 14 of 31

Figure 7: Scatter plots of a) NO2, b) SO2 and c) NO (units in ppb) versus PM2.5  (units are in µg/m3) for each site, d) NO2 versus NO at each site, e) SO2 versus 
NO at each site (all gases are reported in ppb).

Figure 8: Kibera Girls Soccer Academy. The top panel shows the variation of PM1, PM2.5 and PM10 over the course of an average week in units of µg/m3. 
The panel on the bottom left shows these concentrations varying over the course of an average day. The bottom middle figure shows the variation of PM 
over 8 months (May 5, 2016 to Jan11, 2017). The bottom right figure shows concentrations during an average week. The shadings in the plot indicate 95% 
confidence intervals.
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in the south east and north east for high wind speeds. There is a 
common source of SO2 in the southeast. There are sources of NO 
in the north-north west and south-south-west of our site. There 
is a source of NO2 and NO from the west. UN Avenue is located 
to the west of the monitor and is a potential source of vehicular 
pollution.

All Saint’s Cathedral School
The particulate matter pollution at All Saint’s Cathedral School 
is shown in Figure 16. Here as for the previous two sites, we 
see peaks of pollutants in the morning and in the evening 
corresponding to traffic patterns. Note that the values of PM 
registered at this site are in the same range as at UNEP. Here too, 
PM levels dip on Sunday but not on Saturday. This indicates that 
people come into the city on Saturdays but not Sunday . 

From Figure 17,  we see there is a common source of fine 

particulates in the north west for low wind speeds. We see 
that there is also a source of SO2 in the north west. There is a 
common source of SO2 and coarse particulates in the east. Note 
there are several small industries and shops in this area which 
are potential sources of pollution. We did not have enough data 
to produce a similar plot of NO.

Alliance Girls School
We examined the data further to see why pollution was so 
high at Alliance Girls School. Figure 18 indicates that on some 
mornings, between midnight and 6 am, there is an immense 
spike in PM10 registered by the OPCs. When we examine the total 
PM time series plot in Figure 2, we see periodic spikes in PM10 
as well. On speaking to the schoolchildren, we were told that 
boilers were lit using firewood at a site located very close to the 
deployed air quality monitor. Our monitors were thus able to 
highlight an important finding.

Figure 9: Kibera Girls Soccer Academy. Bivariate plots of each pollutant (note even negative 
values of the gas pollutants were considered) with respect to wind speed and wind direction 
from May 5, 2016 to Jan11, 2017. The image at the bottom shows the site and the black 
arrow indicates the direction that the monitor.
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Figure 19 indicates  NO2 comes mainly from the south and west 
of the site at rather high wind-speeds. The Southern Bypass a 
major highway is in this direction, and it is possible that vehicular 
fumes from this road are a major source of NO2. Figure 18 also 
indicates that there is a major common source of PM1, PM2.5 and 
SO2 from the west as well which could also be due to traffic on 
the Southern Bypass. Trucks typically use the Southern Bypass. 
They burn diesel with high levels of sulphur, which could be the 
source of the SO2 seen. However, there is a major source of PM10 
from the north-east as well. The burning of firewood takes place 
at the north of our site and thus it is highly likely that it is this 
that is the major source of the coarse particulates picked up by 
the monitor. Note we do not have enough data to plot NO for 
this site.

Discussion and Policy Implications
Even with technical limitations in both the study and the 
sensors, we were nevertheless able to glean a number of 
insights from the data. At a local level, the data we gathered 
led to new discussions about air pollution within the schools, 
which up to this point have not been sites for air quality 
measurements. The exception is the monitoring station at the 
University of Nairobi, which is primarily used for teaching and 
research on campus. This suggests that further experimenting 
with sensors through citizen science efforts can be a valuable 
way of spreading awareness and having public discussions, 
as long as the potential uncertainties in the data are also 
part of the conversation (Impressing on the communities the 
working of the optical particle counter that we used to measure 
particulate matter allowed them to understand the limitations 
of the instrument).

For example, identifying the peak in PM10 at Alliance Girls School 
on Wednesday mornings was an important discovery- especially 
as the monitor was deployed on the wall of a dormitory. 
Conversations with the school led us to discover the burning of 
firewood to heat water as a source of this pollution. This allowed 
us to engage with the school and discuss with students and staff 
the hazards of air pollution, as well as ways to mitigate their 
particular source by using cleaner fuels or burning firewood in 
a different location far away from the students. Identifying that 
the school was in control of this burning allowed us to work with 
them to think through various possible pollution management 
plans. Continued monitoring will reveal if the measures the 
schools adopts are effective.

Conversations with students at the Kibera Girls Soccer Academy 
were more complex because the school is located in a large 
slum and faces a multi-faceted air pollution source problem. 
Thus, mitigation became part of the conversation – for example, 
whether planting trees might block the influx of particulates 
into the school premises from the south-east. This type of 
conversation around air pollution mitigation also came up in the 
conversations in Mathare slum (Ngo et al 2015b). More accurate 
measurements of local, canyon-influenced wind speed and 
wind direction over different seasons will be crucial to improving 
the efficacy of any interventions aimed at addressing sources. 
Given the poor services in these slum areas, waste burning is 
likely to be one source that needs addressing. However, without 
alternatives such as better solid waste disposal, mitigation 
techniques like tree planting or finding ways to avoiding the 
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worst sources where possible becomes important (Ngo et 
al. 2015b). Finally, our discussion with the community at the 
Viwandani Community Center led to the community leaders 
resolving to bring this issue up with the Nairobi City County, 
which is responsible for solid waste disposal, and also air quality 
along with the National Environmental Management Authority 
(NEMA).

It is important to note that the monitors were not stolen as 
many people had feared. Our discussions with the community 
led to them to appreciate the importance of our monitoring 
instruments. The Kibera Girls Soccer Academy even built a 
small gate to the alley on which our instrument was located, at 
their own cost to protect the instrument. However, the OPC at 
the Viwandani community center and at Alliance Girls School 
did lose power. Better understanding of the electric power 
situation and how it can be addressed at each location will be 
necessary for future deployments. This suggests overall, that 
more experiments with air quality sensors in collaboration with 
citizens are possible and provide a fruitful way to get some data 
and discussion on air quality in the absence of systematic air 
quality monitoring going on in the city. It is also a way to help 
citizens and entities like schools understand how they can play 
a role in improving air quality and ask more of their government. 

Some broader conclusions can be drawn regarding air quality 
in the city of Nairobi. The pattern of peaks in data at most of 
our school sites indicates that vehicular emissions are a major 
source of pollution. Therefore, this implies that the city should 
prioritize a shift toward non-motorized transport, better fuel 
standards, and adopting cleaner vehicular technologies, 
as opposed to widening existing roads and building super 
highways. Another point of interest is that PM seems to peak 
in June over the roughly 8 months that the deployment took 
place. This needs to be examined in more detail. However, the 
policy implications could be that the Nairobi city council should 
focus especially on reducing vehicular traffic during this month. 
Another interesting observation is that the morning pollution 
peaks in the informal settlements occur earlier in the day than 
at the UNEP, St Scholastica and All Saints Cathedral sites. This 
is important to note, as it speaks to the way different groups of 
people use the city. Do people have to set off to work earlier in 
the informal settlements, as their workplaces are further, and 
transportation less convenient? This raises important questions 
around “spatial mismatch” in the city. 

This study had many technical limitations. With sparse 
resources, we were not able to calibrate the gas sensors in 
the ambient conditions of Nairobi, which we know to be very 
important (Piedrahita et al. 2014). We therefore do not know how 
environmental factors and interference from other pollutants 
affected the gas sensors in the field. The interference from other 
pollutants could be large (Hasenfratz et al., 2012.; Popoola et al., 
2012) . We also did not analyse the particle size distribution or 
the chemical composition of the particles sampled by the OPC, 
which could help determine the density of the particles sampled. 
In addition, the analysed data we obtained were noisy, and we 
were unable to determine which filter to apply to separate the 
signal from the noise without having access to any air quality 
measurements from a reference instrument.

We strongly recommend the calibration of low cost gas sensors 
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Figure 10: Same as Figure 8 but for the Viwandani Community Center site for the period May 5, 2016-June 27, 2016.

Figure 11: Same as Figure 9 but for the Viwandani Community Center site for the period May 5, 2016-June 27, 2016. The image at the bottom shows the 
site and the black arrow indicates the direction that the monitor faces. The image has been taken such that the direction north in the image is towards 
the top of the page.
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Figure 12: Same as Figure 8, but for the St Scholastica site.

Figure 13: Same as Figure 9 but for the St Scholastica site. The image at the bottom shows the 
site and the black arrow indicates the direction that the monitor faces. The image has been 
taken such that the direction north in the image is towards the top of the page.
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Figure 14: Same as Figure 8, but for the UNEP site.

Figure 15: Same as Figure 9 for the UNEP site. The image at the bottom shows the site and the 
black arrow indicates the direction that the monitor faces. The image has been taken such that the 
direction north in the image is towards the top of the page.
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Figure 16: Same as Figure 8 but for the All Saints.

Figure 17: Same as Figure 9 but for the All Saints Cathedral site. The image at the bottom shows the site and the black arrow indicates the direction that 
the monitor faces. The image has been taken such that the direction north in the image is towards the top of the page.
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Figure 18: Same as Figure 8 but for the Alliance Girls School site.

Figure 19: Same as Figure 9 but for the Alliance Girls School site. The image at the bottom shows the site and the black arrow indicates the direction that 
the monitor faces. The image has been taken such that the direction north in the image is towards the top of the page.



CLEAN AIR JOURNAL Volume 27, No 2, 201733

Research article: A Nairobi experiment in using low cost air quality monitors Page22 of 31

with reference air quality monitoring instruments in ambient 
conditions in order to determine the error in sensor readings 
due to interference effects of other pollutants and the effect 
of environmental conditions: specifically temperature and 
humidity. In addition, the rate of sensor drift depends on the 
season of the year so it is important to validate the network 
by regular calibrations of the sensors in each season. Work is 
underway on using machine learning algorithms to increase the 
accuracy of low cost sensors (Esposito et al., 2016), and we see 
this work  as being very important for reducing calibration costs 
and improving data reliability. 

We also strongly recommend obtaining a better understanding 
of the size distribution of particles collected by the OPC at each 
site over time. This is because the OPC does not function very 
well for counting particles of sizes < 380 nm. Thus, depending 
on the size distribution of particles (which varies over time), 
our measurements could have large errors, and understanding 
the extent of these errors is important for drawing inferences 
from the sources and type of particulate pollution. In addition, 
analysing the chemical composition of particulates at each 
site can help us develop a better understanding of sources 
of pollution, as well as help us in identifying correct value of 
density to use to convert the particle counts collected by the 
OPC to obtain particulate mass. This could also help us reduce 
the error in measurement.

Another limitation stemming from the proprietary nature of the 
technology is that we cannot report in detail on the performance 
of the electronics or the configuration of the device. These 
factors can affect results as well, and more research is required 
to identify standard configurations to facilitate comparisons of 
experiments. We believe that it is important to set a precedent 
for the reporting of the type of sensor used because, for 
example, it is unclear how the Alphasense A series gas sensors 
compare with the B series. No reports have been published 
examining this comparison. This makes comparing data from 
different low cost air quality sensor experiments difficult. In 
addition, components such as the analogue to digital converter 
(ADC) could add noise to the data, and thus reporting the kind of 
converter used could allow for a greater degree of comparison 
across networks. Over all, better reporting on the mechanics of 
low cost monitoring projects is needed moving forward.

Conclusions 
Low cost sensors and apps that draw on their data to inform 
citizens about air pollution are becoming more and more 
prevalent. Given the magnitude of the data gaps in African 
cities, the growing availability of low cost sensors presents 
an important opportunity. This is especially the case as plans 
move forward to measure air pollutants for the Sustainable 
Development Goals and fight against climate change. However, 
much more research is needed on how well these new devices 
work under widely varied conditions, and whether the less 
accurate data these sensors generate is helpful or even harmful 
(Lewis and Edwards 2016, Kumar et al. 2015). 

Our experiment using less expensive, lower-quality sensors in 
Nairobi schools contributes to this critical discussion. We did 
find significant technical limitations that need further work. 
However, we found that less accurate but carefully interpreted 

data created by sensors within a citizen science initiative was 
clearly better than no data. Both the process of getting the 
data and the data itself, once carefully interpreted, helped 
to generate broader public understanding and interest in 
monitoring air quality and addressing likely sources of ambient 
outdoor air pollution. We also gained some idea of the air 
pollution problems affecting schoolchildren across class divides 
with more challenges clearly facing low income children in the 
slums.

The deployment and analysis of our network also showed that 
the cost of the sensors is only a small fraction of the total cost 
of network deployment. This is because maintenance of the 
network, calibration of the sensors and the analysis of the data 
is time consuming and therefore expensive. It is also abundantly 
clear that “low cost” sensors cannot obviate the need for 
stronger investment in high quality monitoring and related 
local scientific research around air quality in African cities. While 
low cost sensors can allow for more measurements and more 
civic engagement, this is ideally conducted in collaboration 
with local scientists who are well-equipped to ensure data are 
collected and interpreted accurately for the public. Lewis and 
Edwards (2016) suggest “well designed sensor experiments, that 
acknowledge the limitations of the technologies as well as the 
strengths, have the potential to simultaneously advance basic 
science, monitor air pollution — and bring the public along”. 
We believe we have shown this to be the case for African cities 
like Nairobi that currently do not have an air quality monitoring 
system but do have a substantial air quality problem. 

Acknowledgements
The authors would like to thank Dr. Jacqueline McGlade, United 
Nations Environment Program (UNEP), Sami Dimassi, United 
Nations Environment Program (UNEP), Valentin Foltescu, 
United Nations Environment Program (UNEP), the company 
Alphasense, the company Atmospheric Instruments, Charles 
Mwangi from the NASA GLOBE program, the Wajukuu Arts 
Collective and the Kibera Girls Soccer Academy, Alliance 
Girls School, St Scholastica, All Saint’s Catherdral School and 
Viwandi Community Center. We also thank Dr Ralph Kahn for his 
valuable comments.

References
Amegah, A.K., Agyei-Mensah, S., n.d. Urban air pollution in Sub-
Saharan Africa: Time for action. Environ. Pollut. doi:10.1016/j.
envpol.2016.09.042.

AQ_GlobalReport_Summary.pdf, n.d.

Carslaw, D.C., Beevers, S.D., 2013. Characterising and 
understanding emission sources using bivariate polar plots 
and k-means clustering. Environ. Model. Softw. 40, 325–329. 
doi:10.1016/j.envsoft.2012.09.005.

Carslaw, D.C., Ropkins, K., 2012. openair — An R package for 
air quality data analysis. Environ. Model. Softw. 27–28, 52–61. 
doi:10.1016/j.envsoft.2011.09.008.

Development, O. of R.&, n.d. Sensor Evaluation Report [WWW 
Document]. URL https://cfpub.epa.gov/si/si_public_record_
report.cfm?dirEntryId=277270 (accessed 10.17.16).



CLEAN AIR JOURNAL Volume 27, No 2, 201734

Dominici, F., Peng, R.D., Barr, C.D., Bell, M.L., 2010. Protecting 
Human Health from Air Pollution: Shifting from a Single-
Pollutant to a Multi-pollutant Approach. Epidemiol. Camb. Mass 
21, 187–194. doi:10.1097/EDE.0b013e3181cc86e8.

Egondi, T., Kyobutungi, C., Ng, N., Muindi, K., Oti, S., Vijver, S. 
van de, Ettarh, R., Rocklöv, J., 2013. Community Perceptions 
of Air Pollution and Related Health Risks in Nairobi Slums. Int. 
J. Environ. Res. Public. Health 10, 4851–4868. doi:10.3390/
ijerph10104851.

Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R.L., 
Popoola, O., 2016. Dynamic neural network architectures for 
on field stochastic calibration of indicative low cost air quality 
sensing systems. Sens. Actuators B Chem. 231, 701–713. 
doi:10.1016/j.snb.2016.03.038.

Gaita, S.M., Boman, J., Gatari, M.J., Pettersson, J.B.C., Janhäll, 
S., 2014. Source apportionment and seasonal variation of PM2.5 
in a Sub-Saharan African city: Nairobi, Kenya. Atmos Chem Phys 
14, 9977–9991. doi:10.5194/acp-14-9977-2014.

Gatari, M.J., Boman, J., 2003. Black carbon and total carbon 
measurements at urban and rural sites in Kenya, East 
Africa. Atmos. Environ. 37, 1149–1154. doi:10.1016/S1352-
2310(02)01001-4.

Gatari, M.J., Boman, J., Wagner, A., 2009. Characterization of 
aerosol particles at an industrial background site in Nairobi, 
Kenya. X-Ray Spectrom. 38, 37–44. doi:10.1002/xrs.1097.

Hasenfratz, D., Saukh, O., Thiele, L., 2012. On-the-Fly Calibration 
of Low-Cost Gas Sensors, in: SpringerLink. Springer Berlin 
Heidelberg, pp. 228–244. doi:10.1007/978-3-642-28169-3_15.

Kinney, P.L., Gichuru, M.G., Volavka-Close, N., Ngo, N., Ndiba, P.K., 
Law, A., Gachanja, A., Gaita, S.M., Chillrud, S.N., Sclar, E., 2011. 
Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya. Environ. 
Sci. Policy 14, 369–378. doi:10.1016/j.envsci.2011.02.005.

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., 
Di Sabatino, S., Bell, M., Norford, L., Britter, R., 2015. The rise of 
low-cost sensing for managing air pollution in cities. Environ. 
Int. 75, 199–205. doi:10.1016/j.envint.2014.11.019.

Lewis, A., Edwards, P., 2016. Validate personal air-pollution 
sensors. Nat. News 535, 29. doi:10.1038/535029a.

Lindén, J., Boman, J., Holmer, B., Thorsson, S., Eliasson, I., 2012. 
Intra-urban air pollution in a rapidly growing Sahelian city. 
Environ. Int. 40, 51–62. doi:10.1016/j.envint.2011.11.005.

Mead, M.I., Popoola, O.A.M., Stewart, G.B., Landshoff, P., Calleja, 
M., Hayes, M., Baldovi, J.J., McLeod, M.W., Hodgson, T.F., Dicks, 
J., Lewis, A., Cohen, J., Baron, R., Saffell, J.R., Jones, R.L., 2013. 
The use of electrochemical sensors for monitoring urban air 
quality in low-cost, high-density networks. Atmos. Environ. 70, 
186–203. doi:10.1016/j.atmosenv.2012.11.060.

M. Fiore, A., Naik, V., V. Spracklen, D., Steiner, A., Unger, N., 
Prather, M., Bergmann, D., J. Cameron-Smith, P., Cionni, I., 
J. Collins, W., Dalsøren, S., Eyring, V., A. Folberth, G., Ginoux, 
P., W. Horowitz, L., Josse, B., Lamarque, J.-F., A. MacKenzie, 
I., Nagashima, T., M. O’Connor, F., Righi, M., T. Rumbold, S., T. 

Research article: A Nairobi experiment in using low cost air quality monitors Page 23 of 31

Shindell, D., B. Skeie, R., Sudo, K., Szopa, S., Takemura, T., Zeng, 
G., 2012. Global air quality and climate. Chem. Soc. Rev. 41, 
6663–6683. doi:10.1039/C2CS35095E.

Muindi, K., Egondi, T., Kimani-Murage, E., Rocklov, J., Ng, 
N., 2014. “We are used to this”: a qualitative assessment 
of the perceptions of and attitudes towards air pollution 
amongst slum residents in Nairobi. BMC Public Health 14, 226. 
doi:10.1186/1471-2458-14-226.

Ngo, N.S., Gatari, M., Yan, B., Chillrud, S.N., Bouhamam, K., 
Kinney, P.L., 2015. Occupational exposure to roadway emissions 
and inside informal settlements in sub-Saharan Africa: A 
pilot study in Nairobi, Kenya. Atmos. Environ. 111, 179–184. 
doi:10.1016/j.atmosenv.2015.04.008.

Ngo, N.S., Kokoyo, S., Klopp, J., 2017. Why participation matters 
for air quality studies: risk perceptions, understandings of 
air pollution and mobilization in a poor neighborhood in 
Nairobi, Kenya. Public Health 142, 177–185. doi:10.1016/j.
puhe.2015.07.014.

Njee, R.M., Meliefste, K., Malebo, H.M., Hoek, G., 2016. Spatial 
Variability of Ambient Air Pollution Concentration in Dar es 
Salaam. J. Environ. Pollut. Hum. Health J. Environ. Pollut. Hum. 
Health 4, 83–90. doi:10.12691/jephh-4-4-2.

Petkova, E.P., Jack, D.W., Volavka-Close, N.H., Kinney, P.L., 
2013. Particulate matter pollution in African cities. Air Qual. 
Atmosphere Health 6, 603–614. doi:10.1007/s11869-013-0199-6
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, 
Y., Li, K., Dick, R.P., Lv, Q., Hannigan, M., Shang, L., 2014. The 
next generation of low-cost personal air quality sensors for 
quantitative exposure monitoring. Atmos Meas Tech 7, 3325–
3336. doi:10.5194/amt-7-3325-2014.

Popoola, O., Stewart, G., Jones, R.L., Mead, I., Saffell, J., 2012. 
7.4.4 Electrochemical Sensors for Environmental Monitoring in 
Cities. Proc. IMCS 2012 640–640. doi:http://dx.doi.org/10.5162/
IMCS2012/7.4.4.

Schwela, D., 2012a. Review of urban air quality in Sub-Saharan 
Africa region - air quality profile of SSA countries (No. 67794). 
The World Bank.

Schwela, D., 2012b. Review of urban air quality in Sub-Saharan 
Africa region - air quality profile of SSA countries (No. 67794). 
The World Bank.

Sousan, S., Koehler, K., Hallett, L., Peters, T.M., 2016. Evaluation 
of the Alphasense optical particle counter (OPC-N2) and the 
Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. 
Technol. 50, 1352–1365. doi:10.1080/02786826.2016.1232859.

Vliet, E.D.S. van, Kinney, P.L., 2007. Impacts of roadway 
emissions on urban particulate matter concentrations in sub-
Saharan Africa: new evidence from Nairobi, Kenya. Environ. Res. 
Lett. 2, 045028. doi:10.1088/1748-9326/2/4/045028.

World Health Organization (WHO) Burden of Disease from 
Ambient Air Pollution for 2012, WHO, Geneva (2014). Available: 
http://www.who.int/phe/health_topics/outdoorair/databases/
AAP_BoD_results_March2014.pdf



CLEAN AIR JOURNAL Volume 27, No 2, 201735

Appendix
Figures 1A and 2A show the raw 1-minute data recorded of particulate pollutants and the gaseous pollutants, respectively.

Research article: A Nairobi experiment in using low cost air quality monitors Page 24 of 31

Figure 1A: 1-minute  PM1 (red), PM2.5 (blue) and PM10 (green) mass concentration (µg/m3) time series plots for each site; a) Kibera Girls Soccer Academy, 
b) Viwandani Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St Scholastics, d) 
UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 1, 2016 to January 11, 2017.
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Figure 2A: : 1-minute  NO2 (red), NO (blue) and SO2 (green) concentration (ppb) time series plots for each site a) Kibera Girls Soccer Academy, b) 
Viwandani Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St Scholastics, d) 
UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 1, 2016 to January 11, 2017.
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Table 1A shows the correlation between gaseous pollutant values > 0 and temperature/humidity and the other pollutants measured 
at each site. This table shows that for gaseous pollutants with values > 0, the correlation between temperature and humidity is low, 
and has the same sign across sites. This indicates that the signal registered is more likely to only be due to the pollutants and is not 
affected by environmental factors. 

Figures 3A to 7A clearly show the variation of the gaseous pollutants with temperature. It is clear from these figures that for high 
temperatures (roughly > 200 C), negative values of pollutants ae registered. Co-location with a reference monitor is required in order to 
truly identify the ranges in which the values are correct. However, plotting these graphs is a rough way to identify temperature ranges 
in which the sensors clearly make incorrect measurements.
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Table 1A: Summary of the Pearson correlation coefficient (R) at each of the six sites for all gaseous pollutant observations greater than zero. 

Kibera Viwandani St Scholastica UNEP All Saints Alliance

Correlation of NO2 with temperature 0.13 0.02 0.17 0.32 -0.045 0.38

Correlation of SO2 with temperature 0.027 0.01 0.18 0.18 0.25 0.04

Correlation of NO with temperature 0.028 -0.12 -0.17 -0.04 -0.28 -0.12

Correlation of NO2 with humidity -0.13 -0.032 -0.27 -0.31 0.099 -0.39

Correlation of SO2 with humidity -0.056 -0.018 -0.16 -0.16 -0.11 0.013

Correlation of NO with humidity -0.15 -0.09 0.26 0.06 0.058 -0.06

Correlation of NO with NO2 0.32 0.11 0.098 0.26 -0.097 0.27

Correlation of NO with SO2 0.55 0.24 0.31 0.33 0.47 0.36

Correlation of NO with PM10 0.13 0.16 0.12 0.12 0.37 0.19

Correlation of NO with PM2.5 0.16 0.13 0.09 0.06 0.27 0.16

Correlation of NO with PM1 0.16 0.12 0.09 0.03 0.27 0.17

Correlation of NO2 with SO2 0.16 0.14 0.21 0.28 0.18 0.066

Correlation of NO2 with PM2.5 0.13 0.29 0.1 0.16 0.28 0.02

Correlation of NO2 with PM10 0.058 0.32 0.24 0.31 0.26 0

Correlation of NO2 with PM1 0.12 0.3 0.089 0.12 0.27 0.014

Correlation of SO2 with PM2.5 0.25 0.13 0.12 0.18 0.25 0.12

Correlation of SO2 with PM10 0.086 0.12 0.19 0.22 0.25 0.01

Correlation of SO2 with PM1 0.26 0.13 0.12 0.16 0.23 0.12
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Figure 3A: Time series of PM2.5 in units of µg/m3 with the color scale corresponding to temperature for the sites: a) Kibera Girls Soccer Academy, b) 
Viwandani Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St Scholastics, d) 
UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 5, 2016 to January 11, 2017. 
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Figure 4A: Time series of NO for recordings >-100ppb in units of ppb with the color scale corresponding to temperature for the sites: a) Kibera Girls Soccer 
Academy, b) Viwandani Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St 
Scholastics, d) UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 5, 2016 to  January 11, 2017.
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Figure 5A: Time series of NO in units of ppb with the color scale corresponding to temperature for the sites. No filter was applied to the NO data: a) Kibera 
Girls Soccer Academy, b) Viwandani Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 
2016), c) St Scholastics, d) UNEP, e) All Saints Cathedral School, f) Alliance Girls School from May 5, 2016 to January 11, 2017.
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Figure 6A: Time series of NO2 in units of ppb with the color scale corresponding to temperature for the sites: a) Kibera Girls Soccer Academy, b) Viwandani 
Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St Scholastics, d) UNEP, e) All 
Saints Cathedral School, f) Alliance Girls School from May 5, 2016 to January 11, 2017.  
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Figure 7A: Time series of SO2 in units of ppb with the color scale corresponding to temperature for the sites: a) Kibera Girls Soccer Academy, b) Viwandani 
Community Center (note that due to an extended power outage this monitor stopped logging data after June 27, 2016), c) St Scholastics, d) UNEP, e)  All 
Saints Cathedral School, f) Alliance Girls School from May 5, 2016 to January 11, 2017.




