Fracture of endodontic instruments - Part 1: Literature review on factors that influence instrument breakage

Keywords: endodontic instruments, breakage


Instrument fracture is a serious complication during endodontic treatment of teeth, having an adverse effect on the outcome of the nickel titanium (NiTi) treatment, especially if the fracture prevents apical access to the infected root canal. Despite the advent of NiTi files, the risk of fracture during the endodontic preparation of root canals, especially in severely curved canals, remains a serious concern. The fracture of NiTi files during preparation may result in a compromised prognosis for the tooth. In the presence of periapical lesions, instrument fracture may reduce the chances of successful healing.


1. Spili P, Parashos P, Messer HH. The Impact of Instrument Fracture on Outcome of Endodontic Treatment. J Endod. 2005; 31(12): 845-50.

2. Öztan M. Endodontic treatment of teeth associated with a large periapical lesion. Int Endod. J. 2002; 35(1): 73-8.

3. Soares JA, Brito-Júnior M, Silveira FF, Nunes E, Santos SM. Favorable response of an extensive periapical lesion to root canal treatment. J Oral Sci. 2008; 50(1): 107-11.

4. Al-Fouzan KS. Incidence of rotary ProFile instrument fracture and the potential for bypassing in vivo. Int Endod. J. 2003; 36(12): 864-7.

5. Schäfer E, Schulz-Bongert U, Tulus G. Comparison of Hand Stainless Steel and Nickel Titanium Rotary Instrumentation: A Clinical Study. J Endod. 2004; 30(6): 432-5.

6. Parashos P, Messer HH. Questionnaire survey on the use of rotary nickel-titanium endodontic instruments by Australian dentists. Int Endod J. 2004; 37(4): 249-59.

7. Zuolo ML, Walton RE. Instrument deterioration with usage: nickel-titanium versus stainless steel. Quintessence international 1997; 28(6): 397-402.

8. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod. Oct 2004; 30(10): 722-5.

9. Arens FC, Hoen MM, Steiman HR, Dietz GC Jr. Evaluation of single-use rotary nickel-titanium instruments. J Endod. 2003; 29(10): 664-6.

10. Xu X, Eng M, Zheng Y, Eng D. Comparative Study of Torsional and Bending Properties for Six Models of NickelTitanium Root Canal Instruments with Different Cross-Sec tions. J Endod. 2006; 32(4): 372-5.

11. Berutti E, Chiandussi G, Gaviglio I, Ibba A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J Endod. 2003; 29(1): 15-9.

12. Anusavice KJ. Phillips' Science of Dental Materials. 11th ed. Philadelphia: Saunders; 2003.

13. Parashos P, Messer HH. Rotary NiTi Instrument Fracture and its Consequences. J Endod. 2006; 32(11): 1031 -43.

14. McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J. 2013; 214(7): 341-8.

15. Sattapan B, Nervo GJ, Palamara JEA, Messer HH. Defects in Rotary Nickel-Titanium Files After Clinical Use. J Endod. 2000; 26(3): 161-5.

16. Cheung GSP, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J. 2005; 38(11): 802-9.

17. Shen Y, Cheung GS, Bian Z, Peng B. Comparison of Defects in ProFile and ProTaper Systems after Clinical Use. J Endod. 2006; 32(1): 61-5.

18. Bouska J, Justman B, Williamson A, DeLong C, Qian F. Resistance to Cyclic Fatigue Failure of a New Endodontic Rotary File. J Endod. 2012; 38(5): 667-9.

19. Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomecha-nically treated NiTi alloys - a review. Int Endod J. 2018; 51(10): 1088-103.

20. Algahtani F, Huang X, Haapasalo M, et al. Fatigue resistance of ProTaper gold exposed to high-concentration sodium hypochlorite in double curvature artificial canal. Bio-active Materials. 2019; 4: 245-8.

21. Boutsioukis C, Lambrianidis T. Factors Affecting Intracanal Instrument Fracture. Management of Fractured Endodontic Instruments: Springer; 2018: 31-60.

22. Kitchens GG, Jr., Liewehr FR, Moon PC. The effect of operational speed on the fracture of nickel-titanium rotary instruments. J Endod. 2007; 33(1): 52-4.

23. Gambarini G, Plotino G, Sannino G, et al. Cyclic fatigue of instruments for endodontic glide path. Odontology. 2015; 103(1): 56-60.

24. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J. 2006; 39(10): 755-63.

25. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997; 23(2): 77-85.

26. Setzer FC, Böhme CP. Influence of Combined Cyclic Fatigue and Torsional Stress on the Fracture Point of NickelTitanium Rotary Instruments. J Endod. 2013; 39(1): 133-7. [ Links ]

27. Gutmann JL, Gao Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: a focused review. Int Endod J. 2012; 45(2): 113-128.

28. Jonker CH, De Wet FA, Van der Vyver PJ. The influence of glide path preparation on the failure rate of WaveOne reciprocating instruments: research. South African Dental Journal. 2014; 69(6): 266-9.

29. Baek SH, Lee CJ, Versluis A, Kim BM, Lee W, Kim HC. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J Endod. 2011; 37(9): 1283-6.

30. Kim HC, Kwak SW, Cheung GS, Ko DH, Chung SM, Lee W. Cyclic fatigue and torsional resistance of two new nickeltitanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod. 2012; 38(4): 541-4.

31. Zheng Q, Zhang L, Zhou X, et al. C-shaped root canal system in mandibular second molars in a Chinese population evaluated by cone-beam computed tomography. Int Endod J. 2011; 44(9): 857-62.

32. Cheung GSP, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J. 2011; 44(4): 357-61.

33. Peters OA, de Azevedo Bahia MG, Pereira ESJ. Contemporary Root Canal Preparation: Innovations in Biomechanics. Dent Clin North Am. 2017; 61(1): 37- 58.

34. Gambarini G, Plotino G, Grande NM, Al-Sudani D, De Luca M, Testarelli L. Mechanical properties of nickeltitanium rotary instruments produced with a new manufacturing technique. Int Endod J. 2011; 44(4): 337-41.

35. Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a Novel Nickel-Titanium Alloy and 508 Nitinol on the Cyclic Fatigue Life of ProFile 25/.04 Rotary Instruments. J Endod. 2008; 34(11): 1406-9.

36. Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of Torsional and Fatigue Preloading on HyFlex EDM Files. J Endod. 2018; 44(4): 643-7.

37. Alapati SB, Brantley WA, Iijima M, et al. Metallurgical Characterization of a New Nickel-Titanium Wire for Rotary Endodontic Instruments. J Endod. 2009; 35(11): 1589-93.

38. Ye J, Gao Y. Metallurgical Characterization of M-Wire Nickel-Titanium Shape Memory Alloy Used for Endodon-tic Rotary Instruments during Low-cycle Fatigue. J Endod. 2012; 38(1): 105-7.

39. Pereira ES, Peixoto IF, Viana AC, et al. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments. Int Endod J. 2012; 45(5): 469-74.

40. Alapati SB, Brantley WA, Iijima M, et al. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod. 2009; 35(11): 1589-93.

41. Bonessio N, Pereira ES, Lomiento G, et al. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys. Int Endod J. 2015; 48(5): 441-50.

42. Pereira ESJ, Gomes RO, Leroy AMF, et al. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dent Mater. 2013; 29(12): 318-24.

43. Acosta ECP, Resende PD, Peixoto IFdC, Pereira ÉSJ, Buono VTL, Bahia MGdA. Influence of cyclic flexural deformation on the torsional resistance of controlled memory and conventional nickel-titanium instruments. J Endod. 2017; 43(4): 613-8.

44. Inojosa IDFDAJ, Lopes HP, Pereira PLR, et al. Fatigue resistance of endodontic instruments manufactured in NiTi CM Wire and in conventional NiTi alloy with eletrochemical treatment. 2018; 66(2): 111-6.

45. Braga LCM, Silva ACF, Buono VTL, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod. 2014; 40(9): 1494-7.

46. Shen Y, Zhou H-mP, Zheng Y, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011; 37(11): 1566-71.

47. AlShwaimi E. Cyclic fatigue resistance of a novel rotary file manufactured using controlled memory Ni-Ti technology compared to a file made from M-wire file. Int Endod J. 2018; 51(1): 112-7.

48. Galal M. Metallurgical effect on the mechanical behavior of rotary endodontic files using finite element analysis. Bulletin of the National Research Centre. 2019; 43(1): 1-5.

49. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011; 37(7): 997-1001.

50. Adigüzel M, Capar ID. Comparison of Cyclic Fatigue Resistance of WaveOne and WaveOne Gold Small, Primary, and Large Instruments. J Endod. 2017; 43(4): 623-7.

51. Webber J. Shaping canals with confidence: WaveOne GOLD single-file reciprocating system. Roots International Magazine. 2015; 1: 28-33.

52. Elnaghy AM, Elsaka SE. Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments. Int Endod J. 2017; 50(10): 991- 8.

53. Yared G, Bou Dagher F, Machtou P. Influence of rotational speed, torque and operator's proficiency on ProFile failures. Int Endod J. 2001; 34(1): 47-53.

54. Yared G, Kulkarni G. Failure of ProFile Ni-Ti instruments used by an inexperienced operator under access limitations. Int Endod J. 2002; 35(6): 536-41.

55. Mesgouez C, Rilliard F, Matossian L, Nassiri K, Mandel E. Influence of operator experience on canal preparation time when using the rotary Ni-Ti ProFile system in simulated curved canals. Int Endod J. 2003; 36(3): 161-5.

56. Mandel E, Adib-Yazdi M, Benhamou LM, Lachkar T, Mesgouez C, Sobel M. Rotary Ni-Ti profile systems for preparing curved canals in resin blocks: influence of operator on instrument breakage. Int Endod J. 1999; 32(6): 436-43.

57. Gambarini G. Cyclic fatigue of ProFile rotary instruments after prolonged clinical use. Int. Endod J. Jul 2001; 34(5): 386-9.

58. Yared GM, Dagher FE, Machtou P, Kulkarni GK. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files. Int Endod J. 2002; 35(1): 7-12.

59. Shen Y, Coil JM, McLean AGR, Hemerling DL, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use. Part 5: Single Use From Endodontic Specialty Practices. J Endod. 2009; 35(10): 1363-7.

60. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. A comparison of cyclic fatigue between used and new M two Ni-Ti rotary instruments. Int Endod J. 2006; 39(9): 716-23.

61. Bahia MGA, Martins RC, Gonzalez BM, Buono VTL. Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments. Int Endod J. 2005; 38(11): 795-801.

62. Arens FC, Hoen MM, Steiman HR, Dietz GC, Jr. Evaluation of Single-use Rotary Nickel-titanium Instruments. J Endod. 2003; 29(10): 664-6.

63. Schneider K, Korkmaz YK, Addicks K, Lang H, Raab WHM. Prion protein (prp) in human teeth: An unprecedented pointer to prp's function. J Endod. 2007; 33(2): 110-3.

64. Gupta SK, Saxena P. Proposal for a simple and effective diagrammatic representation of root canal configuration for better communication amongst oral radiologists and clinicians. J Oral Biol Craniofac Res. 2016; 6(1): 59-65.

65. Wu J, Lei G, Yan M, Yu Y, Yu J, Zhang G. Instrument separation analysis of multi-used ProTaper Universal rotary system during root canal therapy. J Endod. 2011; 37(6): 758-63.

66. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral surg, oral med, oral pathol, oral radiol, and endod. 2010; 109(1): 60-6.

67. Hülsmann M, Peters OA, Dummer PMH. Mechanical preparation of root canals: shaping goals, techniques and means. Endod Topics. 2005; 10(1): 30-76.

68. Prasad PS, Sam JE, Kumar A, Kannan. The effect of 5% sodium hypochlorite, 17% EDTA and triphala on two different rotary Ni-Ti instruments: An AFM and EDS analysis. JCD. 2014; 17(5): 462-6.

69. Dartar Oztan M, Akman AA, Zaimoglu L, Bilgig S. Corrosion rates of stainless-steel files in different irrigating solutions. Int Endod J. 2002; 35(8): 655-9.

70. Yguel-Henry S, von Stebut J. Cutting efficiency loss of root canal instruments due to bulk plastic deformation, surface damage, and wear. J Endod. 1994; 20(8): 367-72.

71. Peters OA, Boessler C, Zehnder M. Effect of liquid and paste-type lubricants on torque values during simulated rotary root canal instrumentation. Int Endod J. 2005; 38(4): 223-9.

72. Berutti E, Angelini E, Rigolone M, Migliaretti G, Pasqualini D. Influence of sodium hypochlorite on fracture properties and corrosion of ProTaper Rotary instruments. Int Endod J. 2006; 39(9): 693-9.

73. Uslu G, Özyürek T, Yilmaz K, Plotino G. Effect of Dynamic Immersion in Sodium Hypochlorite and EDTA Solutions on Cyclic Fatigue Resistance of WaveOne and WaveOne Gold Reciprocating Nickel-titanium Files. J Endod. 2018; 44(5): 834-7.

74. Castellucci A, West JD. Endodontics Volume 2. 1st edition Florence: Edizioni Odontoiatriche Il Tridente. 2005.

75. Gambarini G. Rationale for the use of low-torque endodon-tic motors in root canal instrumentation. Dent. Traumatol. 2000; 16(3): 95-100.

76. Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod. 1988; 14(7): 346-51.

77. Hamid HR, Gluskin AH, Peters OA, Peters C. Rotary Versus Reciprocation Root Canal Preparation: Initial Clinical Quality Assessment in a Novice Clinician Cohort. J Endod. 2018; 44(8): 1257- 62.

78. Gabel WP, Hoen M, Robert Steiman H, Pink FE, Dietz R. Effect of rotational speed on nickel-titanium file distortion. J Endod. 1999; 25(11): 752-4.

79. da Frota MF, Espir CG, Berbert FL, et al. Comparison of cyclic fatigue and torsional resistance in reciprocating single-file systems and continuous rotary instrumentation systems. J Oral Sci. 2014; 56(4): 269-75.

80. Grande NM, Ahmed HMA, Cohen S, Bukiet Fdr, Plotino GSUoRRI. Current Assessment of Reciprocation in Endo-dontic Preparation: A Comprehensive Review - Part I: Historic Perspectives and Current Applications. J Endod. 2015; 41(11): 1778-83.

81. Wan J, Rasimick BJ, Musikant BL, Deutsch AS. A comparison of cyclic fatigue resistance in reciprocating and rotary nickel-titanium instruments. Aus Endod J. 2011; 37(3): 122-7.

82. Pedullä E, Grande NM, Plotino G, Gambarini G, Rapisar-da EDoESUoRRI. Influence of Continuous or Reciprocating Motion on Cyclic Fatigue Resistance of 4 Different Nickel-Titanium Rotary Instruments. J Endod. 2013; 39(2): 258-61.

83. Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs. Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems. Int J Clin Pediatr Dent. 2016; 9(1): 45-9.

84. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J. Apr 2008; 41(4): 339-44.

85. Shenouda M, Segari W, Zakhari S. Evaluation of deformation and fracture of three single-file NiTi rotary instruments: ProTaper F2, WaveOne Primary and OneShape in simulated curved canals. Journal of IMAB 2018; 24: 2014-s9.

86. Yilmaz K, Özyürek T, Uslu G. Comparision of Cyclic Fatigue Resistance of One Curve, Hyflex EDM, WaveOne Gold and Reciproc Blue Nickel-Titanium Rotary Files at Intra-canal Temperature. Cumhuriyet Dental Journal. 2019; 22: 42-7.

87. Best S, Watson P, Pilliar R, Kulkarni GGK, Yared G. Torsion-al fatigue and endurance limit of a size 30.06 ProFile rotary instrument. Int Endod J. 2004; 37(6): 370-3.

88. Pedullä E, Lo Savio F, Boninelli S, et al. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickeltitanium instruments. Int Endod J. 2015; 48(11): 1043-50.

89. Bürklein S, Schäfer ECIAitSoDUoMnMnG. Apically Extruded Debris with Reciprocating Single-File and Full-sequence Rotary Instrumentation Systems. J Endod. 2012; 38(6): 850-2.

90. Rubio J, Zarzosa JI, Pallares A. A Comparative Study of Cyclic Fatigue of 10 Different Types of Endodontic Instruments: an in Vitro Study. 2019; 53(1): 28-36.

91. You SY, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod. 2010; 36(12): 1991- 4.

92. Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J. Feb 2017; 50(2): 143-52.

93. Topguoglu H, Düzgün S, Akti A, Topguoglu G. Laboratory comparison of cyclic fatigue resistance of WaveOne Gold, Reciproc and WaveOne files in canals with a double curvature. Int Endod J. 2017; 50(7): 713-7.

94. De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010; 43(12): 1063-8.

95. Karatas E, Gunduz HA, Kirici DO, Arslan H, Topcu MC, Yeter KY. Dentinal crack formation during root canal preparations by the twisted file adaptive, ProTaper Next, Pro-Taper Universal, and WaveOne instruments. J Endod. 2015; 41(2): 261- 4.

96. van der Vyver PJ, Jonker C. Reciprocating instruments in endodontics: a review of the literature. SADJ. 2014; 69(9): 404-9.

97. Gavini G, Caldeira CL, Akisue E, Candeiro GTDM, Kawakami DAS. Resistance to Flexural Fatigue of Recip-roc R25 Files under Continuous Rotation and Reciprocating Movement. J Endod. 2012; 38(5): 684-7.

98. Kwak SW, Cheung GS, Ha JH, Kim SK, Lee H, Kim HC. Preference of undergraduate students after first experience on nickel-titanium endodontic instruments. Restorative dentistry & endodontics. 2016; 41(3): 176-181.

99. De-Deus G, Silva EJ, Marins J, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod. 2014; 40(9): 1447-50.

100.Castello-Escriva R, Alegre-Domingo T, Faus-Matoses V, Roman-Richon S, Faus-Llacer VJ. In vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne, and Twisted Files. J Endod. 2012; 38(11): 1521-4.

101. Rubini AG, Sannino G, Pongione G, et al. Influence of file motion on cyclic fatigue of new nickel titanium instruments. Ann Stomatol (Roma). 2013; 4(1): 149-51.

102. Cunha RS, Junaid A, Ensinas P, Nudera W, Bueno CE. Assessment of the separation incidence of reciprocating WaveOne files: a prospective clinical study. J Endod 2014; 40(7): 922-4.

103. West J. Endodontic Update 2006. JERD. 2006; 18(5): 280-300.

104. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of Pro-Taper rotary instruments. J Endod. 2004; 30(4): 228-30.

105.Patiño PV, Biedma BM, Liébana CR, Cantatore G, Bahillo JG. The Influence of a Manual Glide Path on the Separation Rate of NiTi Rotary Instruments. J Endod. 2005; 31(2): 114-6.

106. Peters OA. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review. J Endod. 2004; 30(8): 559-67.

107.Roland DD, Andelin WE, Browning DF, Hsu GH, Torabinejad M. The effect of preflaring on the rates of separation for 0.04 taper nickel titanium rotary instruments. J Endod. 2002; 28(7): 543-5.

108. Blum JY, Machtou P, Ruddle C, Micallef JP. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient. J Endod. 2003; 29(9): 567- 75.

109. Nakagawa RKL, Alves JL, Buono VTL, Bahia MGA. Flexibility and torsional behaviour of rotary nickel-titanium Path-File, RaCe ISO 10, Scout RaCe and stainless steel K-File hand instruments. Int Endod J. 2014; 47(3): 290 - 7.

110.Walsch H. The hybrid concept of nickel-titanium rotary instrumentation. Vol 482004.

111. Gianluca G. The K3 rotary nickel titanium instrument system. Endodontic Topics. 2005; 10(1): 179-82.

112. D'Amario M, Baldi M, Petricca R, De Angelis F, El Abed R, D'Arcangelo C. Evaluation of a new nickel-titanium system to create the glide path in root canal preparation of curved canals. J Endod. 2013; 39(12): 1581- 4.

113. Berutti E, Cantatore G, Castellucci A, et al. Use of nickeltitanium rotary PathFile to create the glide path: comparison with manual preflaring in simulated root canals. J Endod. 2009; 35(3): 408-12.

114. Cassim I, Van der Vyver P. An in vitro comparison of different techniques for glide path preparation. SADJ. 2015; 70(10): 452 -6.

115. Vorster M, van der Vyver PJ, Paleker F. Influence of Glide Path Preparation on the Canal Shaping Times of WaveOne Gold in Curved Mandibular Molar Canals. J Endod. 2018; 44(5): 853- 5.

116. Ruddle CJ, Machtou P, West JD. Endodontic canal preparation: innovations in glide path management and shaping canals. Dent Today. 2014; 33(7): 118 - 23.

117. West JD. The endodontic Glidepath: "Secret to rotary safety". Dent Today. 2010; 29(9): 86,88,90-3.

118. Cheung GSP, Liu CSY. A Retrospective Study of Endo-dontic Treatment Outcome between Nickel-Titanium Rotary and Stainless Steel Hand Filing Techniques. J Endod. 2009; 35(7): 938-43.

119. Paleker F, van der Vyver PJ. Comparison of Canal Transportation and Centering Ability of K-files, ProGlider File, and G-Files: A Micro-Computed Tomography Study of Curved Root Canals. J Endod. 2016; 42(7): 1105-9.
  • Abstract 0
  • PDF 0
Views and downloads are with effect from 11 January 2018